Reactions of Aryliminodimagnesium with Some N,N-Dimethylcarboxamides and Benzonitriles Affording Various Types of Amidines. Correction of Previous Results on Formamidine Formation from N,N-Dimethylformamide $^{1)}$

Masao OKUBO,* Mikio TANAKA, Yuri MURATA, Nobuyuki TSURUSAKI,
Yasumasa OMOTE, Yukinobu IKUBO, and Koji MATSUO
Department of Chemistry, Faculty of Science and Engineering,
Saga University, Honjo-machi, Saga 840

Some symmetrical and unsymmetrical form— and benzamidines were prepared by the reaction of $ArN(MgBr)_2$ with Ar'CN, $HCONMe_2$ and related compounds in tetrahydrofurn.

Usefulness of aryliminodimagnesium $(ArN(MgBr)_2, IDMg)$, derived from anilines in tetrahydrofuran (THF), has been established as shown by the condensation ability with aromatic carbonyl and nitro compounds to afford >C=N-Ar and -N(0)=N-Ar type products. Introduction of nitrogen functionality using IDMg is extended to formation of various type of amidines in the reactions with carboxamides and benzonitriles (Schemes A-E), and is described in this communication.

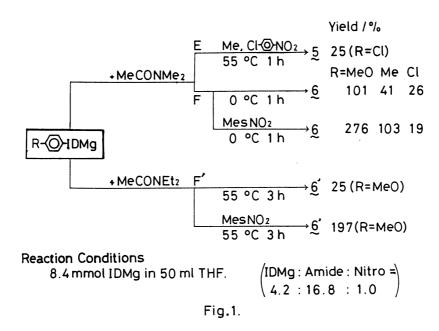
$$ArN(MgBr)_2$$
 + H-CO-NMe₂ \longrightarrow $ArNH-CH=N-Ar$ (A)
[1 : 4] 1
(62-100% for Ar=p-MeO, Me, H, F, C1)

For reaction A, three (M. 0., M. T., K. M.) of the present authors reported that addition of nitrobenzenes (Ar'NO₂) is required to mediate single electron transfer (SET) from IDMg to N,N-dimethylformamide (DMF: two molecules per Mg atom being used). This description² has to be revised since reaction A was proved to proceed in later experiments without addition of Ar'NO₂; the erroneous description arose from failure in the detection of formamidine 1. In the presence of p-substituted Ar'NO₂, formation of 1 competes with that of unsymmetrical azoxy and azo compounds (see Ref. 1), whereas crowded 2,4,6-Me₃C₆H₂NO₂ (MesNO₂) is completely recovered and 1 is solely formed. When Ar'NO₂ is absent, the yield of 1 in the reaction with p-MeOC₆H₄-IDMg (for 1 h) is affected by temperature in an interesting manner: [yield /%, temp /°C] = [58, 55], [59, 20], [100, 10], [72, 0], [29, -40], suggesting participation of equilibrium between the reactants or

between reactant and the precusor of 1. This feature concerns that of D, and comparison of mode of A with that of E (and/or F) is given later.

IDMg +
$$Ar^1CN \longrightarrow Ar-N=C(Ar^1)-NH_2$$
 (B)

[3 : 1] 2 (64-98%; Ar and Ar^1 : p-MeO, Me, C1)


Also for reaction B, an erroneous description was previously given.²⁾ The fact that IDMg reacts with p-nitrobenzonitrile only at its nitro group to afford p-cyanoazoxy- and p-cynoazobenzenes⁵⁾ was considered to arise from general inertness of CN group. However, p-R-benzonitriles (R= MeO, Me, Cl) without strongly electron-accepting nitro group³⁾ are converted into N-monosubstituted benzamidines 2 in yields higher than that obtained by means of the conventional procedure using AlCl₃.⁶⁾

IDMg +
$$H-C(OEt)_2NMe_2 \longrightarrow Ar-N=CH-NMe_2$$
 (C)
[3 : 1] 3 (46-98% for Ar=p-MeO, Me, C1)

IDMg + H-CO-NMe₂ + Ar¹COC1
$$\longrightarrow$$
 Ar-N=C(Ar¹)-NMe₂ (D)
$$\begin{bmatrix} 3 & : & 12 & : & 1 & \end{bmatrix}$$
4 (96% for Ar=Ar¹=p-Me)

Reaction C with DMF-diethylacetal (esterification reagent^{7,8)}) leads smoothly to unsymmetrical N,N-dimethyl-N'-arylformamidine (3) in good yields, whereas triethyl orthoformate is easily converted into N-arylformamide which is hardly converted further into the symmetrical formamidine 1. Reaction A is modified into reaction D by means of stepwise addition of DMF and aroyl chloride into IDMg solution in THF: Unsymmetrical benzamidine 4 is formed in fair yield. The formyl-benzoyl exchange in D could be elucidated by the equilibrium suggested in A.

Reaction E with N,N-dimethylacetamide (DMA) leads in limited cases to unsymmetrical acetamidine 5 accompanying azoxy product, and pathway of E is greatly affected by the substituents of IDMg and Ar'NO $_2$ additives (see Fig. 1). When DMA and p-Cl- or p-Me-C $_6$ H $_4$ NO $_2$ were added, p-ClC $_6$ H $_4$ -IDMg formed 5 (25%) whereas p-MeO and p-Me reagents caused "Claisen-like" self-condensation of DMA in both the absence and presence of Ar'NO $_2$ to give N,N-dimethylacetoacetamide (6; reaction F). The experiments of F in the absence and presence of Ar'NO $_2$ were carried out under conditions shown in Fig.

1; the yields of $\bf 6$, calculated based on the amount of ${\rm Ar'NO_2}$ (irrespective of its presence or absence), were compared for evaluation of its effect. Great improvement of yield of $\bf 6$ (with use of p-MeO reagent) due to addition of ${\rm MesNO_2}$ indicates that SET process, involved in F, is accelerated by the additive in a catalytic mediation manner (vide supra).

Great effect of bulkiness of not only acyl and amino moieties of carboxamides but also nitro additives on pathways of reactions A, E, and F is demonstrated by the three features. First, reaction mode of DMF having formyl moiety is distinguished from that of DMA having acetyl moiety (see Scheme A and Fig. 1). Second, the efficient reaction of DMF in reaction A is in contrast with low reactivity of N,N-diethylformamide giving no appreciable yield of 1 and also with inertness of N-phenyl- and N,N-dimethylbenzamides. Third, concerning pathway of F, N,N-diethylacetamide gave the corresponding acetoacetamide (6'; pathway F') in quite low yield, the yield being improved greatly by addition of crowded MesNO₂: Ordinary p-substituted Ar'NO₂ undergoes the known azoxy formation (see Ref. 1).

Irrespective of comparably strong "coordinating abilities" of DMF and DMA (evaluated by Gutmann's donor numbers $(\mathrm{DN})^{10}$) and similar conditions of A and F, the components of A are bound efficiently to give 1 while the components of F dissociate (probably after SET) to give 6. From comparison of the processes of coordination of acyl oxygen to Mg atom of IDMg (σ -complexation) accompanied by exchange of THF ligand, small formyl and bulky acetyl moieties of A and F lead to mutual and self-condensation, respectively; the tightness of σ -complexation depends on the bulkiness of acyl group. Bulkiness effect of added Ar'NO₂ on E and F reflects, similarly, the degree of its access to the proximity of ligand sphere.

IDMg is a weaker donor than ArMgBr, 4) and the weak electron-accepting ability of DMF is evaluated by its negative reduction potential (E_{red} : $^{-2.01}$ V) 3 larger than that of ordinary p-substituted Ar'NO $_2$ ($^{-1.25}$ — $^{-1.51}$ V) and comparable to that of benzophenone ($^{-1.99}$ V). 4,11) The great structural effect of reactants on the present IDMg reactions with the weak acceptors, amides and nitriles, evokes the behavior of sterically crowded 2,3,5,6-Me $_4$ -benzophenone: No SET takes place because σ -complexation is inhibited on the treatment with IDMg while facile SET takes place on the treatment with PhMgBr 13) (see "Less Reactive, More Selective" principle). Scope and limitations of reactions A-F, optimization of reaction conditions, and precise mechanism and characterization based on defined classification from unified structure-reactivity viewpoint (relative SET efficiency) of reactions of the magnesium reagents 12) will be reported elsewhere. At present, the fact that IDMg procedure is extended to provide novel routes to synthetically useful amidines 14) should be stressed.

References

- 1) Aryliminodimagnesium Reagents. XX. Part XIX: M. Ōkubo and H. Shiku, Bull. Chem. Soc. Jpn., **64**, 196(1991).
- 2) M. Okubo, M. Tanaka, and K. Matsuo, Chem. Lett., 1990, 1005.
- 3) M. $\bar{0}$ kubo and K. Matsuo, unpublished data: E_{red} values of p-RC₆H₄CN are undetermined because they locate at negative outside of the potential window of measurement system in THF-Bu₄NClO₄.⁴)
- 4) M. $\overline{\text{O}}$ kubo, T. Tsutsumi, and K. Matsuo, Bull. Chem. Soc. Jpn., **60**, 2085 (1987).
- 5) M. Okubo, H. Nonaka, and A. Yamauchi, unpublished results.
- 6) F. C. Cooper and M. W. Partridge, Org. Synth., IV, 769(1963).
- 7) H. Vorbruggen, Angew. Chem., Int. Ed. Engl., 2, 211(1963).
- 8) J. Schreiber and A. Eschenmoser, Angew. Chem., Int. Ed. Engl., 2, 212 (1963); Helv. Chim. Acta, 48, 1746(1965).
- 9) F. Babudri, F. Ciminale, L. Di Nunno, and S. Florio, Tetrahedron, 38, 557(1982); M. Okubo and M. Tanaka, unpublished results.
- 10) V. Gutmann, "The Donor-Acceptor Approach to Molecular Interactions," Plenum Press, New York (1978), Chap. 2.
- 11) M. Ōkubo, Y. Fukuyama, M. Sato, K. Matsuo, T. Kitahara, and M. Nakashima, J. Phys. Org. Chem., 3, 379(1990).
- 12) M. Ōkubo, T. Tsutsumi, A. Ichimura, and T. Kitagawa, Bull. Chem. Soc. Jpn., **57**, 2677(1984).
- 13) M. Ōkubo, Bull. Chem. Soc. Jpn., 58, 3108(1985).
- 14) J.-A. Gautier, M. Miocque, and C. C. Farnoux, "The Chemistry of Amidines and Imidates," ed by S. Patai, Wiley-Interscience, New York (1975), Chap. 7.

(Received June 25, 1991)